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Abstract

Background and Objective: Automatic classification of healthy tissues

and organs based on histology images is an open problem, mainly due to the

lack of automated tools. Solutions in this regard have potential in educational

medicine and medical practices. Some preliminary advances have been made

using image processing techniques and classical supervised learning. Due to

the breakthrough performance of deep learning in various areas, we present

an approach to recognise and classify, automatically, fundamental tissues and

organs using Convolutional Neural Networks (CNN).

Methods: We adapt four popular CNNs architectures – ResNet, VGG19,

VGG16 and Inception – to this problem through transfer learning. The result-

ing models are evaluated at three stages. Firstly, all the transferred networks

are compared to each other. Secondly, the best resulting fine-tuned model is

compared to an ad-hoc 2D multi-path model to outline the importance of trans-

fer learning. Thirdly, the same model is evaluated against the state-of-the-art

method, a cascade SVM using LBP-based descriptors, to contrast a traditional

machine learning approach and a representation learning one. The evaluation

task consists of separating six classes accurately: smooth muscle of the elastic
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artery, smooth muscle of the large vein, smooth muscle of the muscular artery,

cardiac muscle, loose connective tissue, and light regions. The different networks

are tuned on 6000 blocks of 100× 100 pixels and tested on 7500.

Results: Our proposal yields F-score values between 0.717 and 0.928. The

highest and lowest performances are for cardiac muscle and smooth muscle of

the large vein, respectively. The main issue leading to limited classification

scores for the latter class is its similarity with the elastic artery. However, this

confusion is evidenced during manual annotation as well. Our algorithm reached

improvements in F-score between 0.080 and 0.220 compared to the state-of-the-

art machine learning approach.

Conclusions: We conclude that it is possible to classify healthy cardio-

vascular tissues and organs automatically using CNNs and that deep learning

holds great promise to improve tissue and organs classification. We left our

training and test sets, models and source code publicly available to the research

community.

Keywords: Transfer learning, SVM, fundamental tissues, organs,

cardiovascular system, histological images

1. Introduction

The recognition of normal fundamental tissues and organs is predominantly

carried out by histology experts or similar. Only a few systems can recognise

fundamental tissues and organs automatically [1, 2, 3]. However, the accuracy of

these tools is not yet comparable to human raters, i.e. this task is still an open5

problem. Automatic classification of tissues and organs in histological images

of the human cardiovascular system has potential in educational medicine [4] as

it could increase the number of cases that a student could analyse – promoting

self-learning [5] – and facilitate online learning to external or remote experts and

students. These types of solutions require lower social and economic investment10

than traditional strategies for obtaining well-trained professionals. Besides, au-

tomatic classification enables labelling of large repositories available in different
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hospitals. Consequently, issues associated with manual classification (e.g. sub-

jectivity, time, difficulty, costs, and impracticality) could be mitigated [6].

The computer-aided recognition of normal and pathological fundamental15

tissues and organs has been addressed using different features and techniques.

Engineered characteristics related to colour, texture and shape have been used

within image processing pipelines for describing [7, 8, 9, 10, 11] and recognis-

ing fundamental tissues [12, 13]. Convolutional Neural Networks (CNN) have

proven effectiveness in varied areas; histopathology is not the exception. In [14],20

a system to support pathologists in cancer diagnosis with improved accuracy,

reproducibility and efficiency was developed. In [15], a deep learning method

was proposed to address two classification tasks in Hematoxylin- and Eosin-

stained tissue images: cancer classification based on immunohistochemistry and

necrosis detection regarding necrosis presence extents. In [16], a method to25

classify glioma and non-small-cell lung carcinoma cases into subtypes was pro-

posed. In [17], a network-based tool was proposed to segment nuclei, epithelium

(stroma vs epithelium) and tubule; detect lymphocyte, mitosis and invasive duc-

tal carcinoma; and classify lymphoma. Nevertheless, none of these CNN-based

techniques addresses the automatic classification of normal tissues and organs30

of the human cardiovascular system.

Preliminary advances have been made in identification and classification of

organs and fundamental tissues of the cardiovascular system. These methods

have been built using image processing techniques, tissue morphological and

textural information, and supervised learning. In particular, we have worked on35

two research lines: segmentation and classification of cells and fibres, allowing

recognition of epithelial, loose connective and muscle tissues [18, 11, 19] and

classification of fundamental tissues and some organs [1, 2, 3, 20].

In this paper, we present an approach to classify the fundamental tissues

and, in some cases, organs of the human cardiovascular system automatically.40

We use transfer learning on well-known deep CNNs to recognise the cardiac

muscle, loose connective tissue (vein, arteries and the heart), smooth muscle

of muscular artery, large vein, elastic artery, and light regions. In this way,
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we devise a more general and robust method that outperforms our previous

works [2, 3] and, at the same time, allows us to recognise organs.45

The rest of this paper is structured as follows. The proposed approach for

automatically classifying fundamental tissues and organs is explained in detail

in Section 2. The dataset, experiments and results are described in Section 3.

In Section 4, we analyse the obtained results. Finally, the main conclusions of

this work are drawn in Section 5.50

2. Method

A fundamental tissue exhibits unique patterns that permit identifying and

differentiating it from others. Likewise, an organ can be recognised by knowing

the tissues present in its histological samples. However, the tissue appearance

may vary within the same organ sample preparation (cut and stain processes)55

or image acquisition settings (microscope and software). For example, thermal

drift and colour samples are two sources of acquisition-related intra-class het-

erogeneity as they introduce small variations in colour and lightning. Note that

colour is not a reliable feature in histological images as differences in muscular

staining may invalidate the results. Fig. 1 shows blocks of 100 × 100 pixels60

extracted from different tissues and light regions. The variability and similarity

among them can be observed.

We apply a transfer learning strategy to adapt four networks trained for

visual object recognition to a different domain, cardiovascular tissue and organ

classification. The considered process consists of four main steps which are de-65

picted in Fig. 2. 1) Both training and testing images are tiled up into blocks

of 100 × 100. At this level, a block is considered if it complies with two con-

straints: it contains only one type of tissue, and it has discriminant information

that makes tissue recognition possible. 2) A network trained for visual object

recognition on natural images is updated to process data from our domain us-70

ing a transfer learning strategy. We use the weights learnt from ImageNet to

initialise the network, and fine-tune it to recognise cardiovascular tissues and
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Figure 1: Examples of variability in tissue patterns. From top to bottom, (a) ”Heart” sym-

bolises the cardiac muscle, (b) ”Muscular” corresponds to the smooth muscle of muscular

artery, (c) ”Elastic” represents smooth muscle of the elastic artery, (d) ”Vein” stands for the

smooth muscle of the large vein, (e) ”Connective” identifies the loose connective tissue, and

(f) ”Light” indicates light regions.
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Figure 2: Proposed transfer learning approach for automatic classification of fundamental

tissues associated with an organ: (1) image blocks of 100 × 100 pixels belonging to training

and validation dataset. (2) pre-trained network. (3) image blocks of 100 × 100 pixels. (4)

fine-tuned model. (4.1), (4.2), (4.3), (4.4), (4.5) and (4.6) classified blocks.

organs. Note that the domain-specific knowledge is given through the training

samples. 3) Blocks of 100 × 100 pixels from the test set are selected without

restrictions. 4) The model resulting from Step 2 is used to classify the content of75

each one of the blocks into one of the following six classes: 4.1) smooth muscle

of the elastic artery; 4.2) smooth muscle of the large vein; 4.3) smooth muscle

of the muscular artery; 4.4) cardiac muscle; 4.5) loose connective tissue; 4.6)

light regions. The details of the complete process are presented in this section.

2.1. Classification using transfer learning80

A CNN trained for performing a certain task can be adapted to deal with

another one. A common transfer learning approach consists of using the convo-

lutional layers as fixed feature extractors and adjusting only the fully connected

layers to the new problem. Two of the main benefits as a consequence of freez-

ing the convolutional layers are fast training and the possibility of training deep85

architectures on small datasets.

In this paper, we adapt four well-known architectures in the state of the

art of large-scale visual recognition to the problem of cardiovascular tissue and
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Table 1: Details of the different architectures transferred to our domain.

Item VGG16 VGG19 Inception ResNet

General

Parameters 15.5M 20.8M 24.1M 25.9M

Channels 3 3 3 3

Input size 100× 100 100× 100 150× 150 200× 200

Number of layers

Convolutional 13 16 94 53

Max pooling 5 5 4 1

Fully connected 3 3 3 3

Presence of modules

Batch normalisation no no yes yes

Residual connections no no no yes

organ classification. The considered architectures are VGG16 [21], VGG19 [21],

Inception [22] and ResNet [23]. These four networks were selected as: (i) they90

have achieved top performances in different challenges, (ii) they have inspired

other designs in a variety of research areas – usage of small kernels instead of

large ones, multi-scale architectures and residual connections – and – perhaps

more importantly – (iii) their weights are available to be modified. These pre-

trained models are downloaded from the Keras webpage2 and loaded onto the95

corresponding architecture. The convolutional layers are fixed to avoid any

modification on the training phase, and the fully connected layers are altered

to the new problem by modifying the output vector length to six. Afterwards,

the training phase takes place. More details of the specific implementations are

listed in Table 1. For the sake of referring to the resulting fine-tuned models,100

we add the prefix Histo- to the base name.

2https://keras.io/applications
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2.2. Crafted ad-hoc architecture

To compare the performance of a network using transfer learning with one

trained on the specific scenario from scratch, we design our own architecture and

evaluate it under the same conditions. The architecture corresponds to a multi-105

path design inspired by the work of [24]. As illustrated in Fig. 3, the network is

formed by three independent branches, which are later merged to produce the

output. The inputs of each path are the RGB channels of the target 25 × 25

patch. This configuration allows the model to incorporate different sources

of information and aggregate various useful features. Hence, it is possible to110

achieve a consented and more accurate result. Each path consists of three

convolutional layers with 24, 32 and 48 kernels, followed by max-pooling layers

with stride size of 2 × 2. Once the three convolutions take place, the output

of the third layer is flattened and input into a dropout layer. This component

is placed at this level to prevent the network from memorising the training115

sample [25, 26]. Then, the resulting vector is used in a fully-connected layer

with 256 units. The resulting vectors from the three branches are averaged and,

subsequently, connected to the softmax output layer with six nodes. As this last

layer returns scores per class, the output class corresponds to the one obtaining

the highest response.120

2.3. CNN vs Support Vector Machines (SVM)

We consider one of the most used techniques in machine learning, SVM, to

contrast with the performance of a network using transfer learning. A cascade

SVM based on LBP descriptors presented in [2] is used. This comparison is rel-

evant in the histological context since, according to the author’s knowledge, no125

previous work assesses both techniques for classification of normal fundamental

tissues and organs using histological images. On the one hand, a CNN learns

features directly from the data and how to use them to produce the expected

output. On the other hand, SVM uses carefully engineered features [27] — after

performing an extensive analysis of the problem. An exhaustive comparison of130

different texture descriptors — e.g. Haralick, LBP and LBPri — and classifiers
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Figure 3: HistoNet architecture inspired by the work in [24]. The network corresponds to

a three-path CNN in which each branch takes as input information from one of the RGB

channels of the image.

— Random Forest varying initial parameters and classical multi-class SVM us-

ing various kernels — was carried out by Mazo et al. [2]. From this work, two

relevant remarks were drawn. First, among all the evaluated descriptors, the

best texture feature to use in this problem is the concatenation of LBP and135

LBPri. Given a block from a histological image, the LBP+LBPri descriptor is

created by concatenating histograms from the LBP (lbp = [l1, l2, ..., l256]) and

the LBPri (lbpri = [lr1, lr2, ..., lr36]) as follows:

LBP + LBPri = [lbp||lbpri] = [l1, l2, ..., l256, lr1 , lr2 , ..., lr36 ], (1)

where LBP +LBPri is a vector of 292 elements. Second, among the evalu-

ated classifiers, a cascade SVM with linear and polynomial kernels yielded the140

best results. The degree of the polynomial kernel was set to 3 after exhaustive

experimentation. Finally, the authors proposed an approach to automatically

classify the fundamental tissues and organs of the human cardiovascular system

utilising LBP descriptors and a cascade SVM with linear and polynomial kernels

to identify six classes: cardiac muscle, smooth muscle of the muscular artery,145
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Table 2: Labels and corresponding description for each one of the considered classes.

Label Description

Muscular Smooth muscle of the muscular artery

Heart Cardiac muscle

Connective Loose connective tissue (i.e. veins, arteries and the heart)

Elastic Smooth muscle of the elastic artery

Vein Smooth muscle of the large vein

Light Light regions

loose connective tissue, smooth muscle of the large vein, smooth muscle of the

elastic artery, and light regions.

3. Experiments and Results

In this section, we present the complete process that supports the proposed

approach. We show the results obtained at three comparison stages: (i) among

CNN models obtained through transfer learning, (ii) between HistoResNet and

HistoNet and (iii) between HistoResNet and a cascade SVM approach [2]. Three

measures based on the confusion matrix are used to assess the response of this

work in the classification of the six classes indicated in Table 2: Precision, Recall

and F-score. Given the number of true positives (TP), false positives (FP),

true negatives (TN) and false negatives (FN), the measures are mathematically

expressed as follows:

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F-score = 2 · Precision ·Recall

Precision + Recall
. (4)

3.1. Experimental setup

One of the most difficult challenges in this area is to obtain enough150

annotated samples of normal tissues and organs of the human cardio-
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vascular systems. Although there are public histological datasets,

issues that prevent using them are: they were taken from a different

species (e.g. mice); they contain pathological samples and not nor-

mal ones; they contain a mix of all human systems and not enough155

samples of the cardiovascular system; and their images were not ac-

quired with standard laboratory and imaging protocols. These and

other challenges have been detected and addressed in our previous

works [28].

Tissue samples from organs were stained with Hematoxylin and Eosin and160

Massons trichrome using a laboratory protocol to control the process. The image

capture protocol was defined for setting microscope and software configuration,

sample manipulation and image capture process to control variability. The

histological images were acquired using a Leica DM750−M microscope with a

resolution of 2048×1536 pixels and stored in PNG format. The microscope had165

eyepieces with a magnification factor of 10× and a field of view of 20, obtaining

100 end magnification for a 10× objective.

A dataset of 6000 blocks, 1000 per class, was divided into 70% for training

and 30% for validation. Another dataset of 7500 blocks was used for testing

and obtaining the results. Images from both datasets were obtained from tissue170

samples of different organs and persons and acquired at 10× objective. The

block size selection is one of the major issues. We used a block size of 100× 100

based on the study in [2] which has the following advantages: (i) a fundamental

tissue can be recognised and (ii) a large number of blocks contain only one type

of tissue. Our ground-truth was provided by the group of six histology experts175

members of the Teblami research group from the Universidad del Valle3. We

have made the datasets at http://biscar.univalle.edu.co/?page_id=1003.

3Grupo de Tejidos Blandos y Mineralizados, Teblami. Research website: https://sites.

google.com/a/correounivalle.edu.co/grupo-de-tejidos-blandos-y-mineralizados
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3.2. Data preparation and training details

As mentioned previously, blocks of 100× 100 were extracted from the input

images. The values are normalised to obtain zero mean and unit variance per180

channel. Note that the mean and standard deviation calculated for the training

set are used later on the test set. Also, since some of the networks require a

specific input size, the blocks were upscaled according to the input sizes shown

in Table 1.

The different networks were trained for n epochs on the training set and185

assessed on the validation set. After various experiments, we observed that,

in this particular case, the considered networks achieved their best results on

the validation set around the tenth iteration and that there was no notable

improvement afterwards. Hence, we fixed the value of n to 20. The whole

training set was passed to the model in mini-batches of 32 elements. To avoid190

over-fitting, we forced the training process to stop before iterating n times if no

improvement was observed for more than two iterations. This monitoring was

carried out using early stopping [29].

The deep learning methods were implemented in Python, using the Keras

library, and run in a computer with 12 cores, 128Gb RAM and a Geforce GTX195

1080 GPU. We have made CNN models publicly available at http://biscar.

univalle.edu.co/?page_id=1082.

3.3. CNNs applied to the cardiovascular tissue classification through transfer

learning

In transfer learning, we compared four of the most used CNNs architectures200

for visual object recognition — ResNet, VGG19, VGG16 and Inception. The

obtained Precision and Recall results are presented in Table 3 and Table 4,

respectively. The corresponding F-score values per method and per class are

shown in Fig. 4.

HistoVGG networks achieved the highest Precision for Elastic, Muscular,205

Heart and Connective with values of 0.963, 0.727, 0.937 and 0.855, respectively.

Nevertheless, HistoResNet obtained the best Precision overall, 0.819. Also,
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Table 3: Precision values per class obtained by different CNN architectures using transfer

learning

Class HistoResNet HistoVGG19 HistoVGG16 HistoInception

Elastic 0.952 0.874 0.963 0.690

Heart 0.902 0.937 0.931 0.918

Muscular 0.712 0.650 0.727 0.579

Connective 0.820 0.855 0.818 0.815

Vein 0.578 0.549 0.434 0.582

Light 0.955 0.928 0.935 0.895

Overall 0.819 0.799 0.801 0.747

Table 4: Recall values per class obtained by different CNN architectures using transfer learning

Class HistoResNet HistoVGG19 HistoVGG16 HistoInception

Elastic 0.863 0.886 0.823 0.879

Heart 0.955 0.937 0.939 0.906

Muscular 0.797 0.794 0.737 0.775

Connective 0.772 0.751 0.751 0.660

Vein 0.943 0.809 0.894 0.537

Light 0.829 0.878 0.869 0.863

Overall 0.860 0.843 0.836 0.770
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Figure 4: F-score values obtained per class using a transfer learning approach on different

CNNs.

the same architecture, HistoResNet, outperformed regarding Recall for Heart,

Muscular, Connective, Vein and overall with scores of 0.955, 0.797, 0.772, 0.943

and 0.860, correspondingly.210

According to Fig. 4, the topmost results were obtained by HistoResNet for

Elastic, Muscular and Vein with an F-score of 0.906, 0.752 and 0.717, respec-

tively. Heart, Connective and Light were better classified using HistoVGG19

with an F-score of 0.937, 0.800 and 0.902, correspondingly. Therefore, overall,

the HistoResNet approach outperformed all the other methods with an overall215

F-score of 0.839. The worst F-score was achieved in the classification of Vein

regardless of the considered technique.

3.4. HistoResNet and HistoNet applied to the cardiovascular tissue classification

A new architecture called HistoNet was used to make a comparison between

transfer learning and one network trained from scratch on our specific domain.220

These results are summarised in Table 5 and Fig. 5.
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Table 5: Precision and Recall values per class obtained by HistoResNet and HistoNet

Precision Recall

Class HistoResNet HistoNet HistoResNet HistoNet

Elastic 0.952 0.984 0.863 0.687

Heart 0.902 0.923 0.955 0.898

Muscular 0.712 0.531 0.797 0.802

Connective 0.820 0.779 0.772 0.741

Vein 0.578 0.470 0.943 0.844

Light 0.955 0.929 0.829 0.839

Overall 0.819 0.769 0.860 0.802

The best Precision scores for Muscular, Connective, Vein and Light were

0.712, 0.820, 0.578 and 0.955, respectively, and were obtained using HistoRes-

Net. The highest Precision for Elastic and Heart, 0.984 and 0.923, was achieved

using HistoNet. HistoResNet yielded the highest Precision overall, 0.819. Also,225

HistoResNet obtained the best Recall for Elastic, Heart, Connective and Vein

with values of 0.863, 0.955, 0.772 and 0.943, respectively, while HistoNet pro-

duced outstanding classification values for Muscular and Light, 0.802 and 0.839.

HistoResNet achieved the best Recall overall, 0.860.

Based on the F-score results shown in Fig. 5, HistoResNet outperforms Hi-230

stoNet regardless of the class. The largest gaps between both methods are

observed for Elastic, Muscular and Vein, where the scores of HistoResNet sur-

pass the ones of HistoNet in more than 10%. The smallest gaps are seen for

Heart and Light where the difference is less than 2%.

3.5. HistoResNet vs a cascade SVM approach235

We compared our HistoResNet against the cascade SVM proposed in [2]

using our dataset, the results are summarised in Table 6. The best F-score

results were obtained by the CNN proposal for both Precision and Recall, for

all the classes and in overall. The highest difference between both methods in

Precision is observed for the Muscular class, and regarding Recall, for Vein class.240
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Figure 5: F-score values obtained per class using ResNet vs HistoNet.

Table 6: Precision and Recall values per class obtained by HistoResNet and SVM

Precision Recall

Class HistoResNet SVM HistoResNet SVM

Elastic 0.952 0.811 0.863 0.622

Heart 0.902 0.848 0.955 0.745

Muscular 0.712 0.442 0.797 0.660

Connective 0.820 0.711 0.772 0.671

Vein 0.578 0.455 0.943 0.568

Light 0.955 0.803 0.829 0.814

Overall 0.819 0.678 0.860 0.680
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Figure 6: F-score values obtained per class using HistoResNet vs SVM.

The comparison results are illustrated in Fig. 6. The best results were ob-

tained using our HistoResNet for all classes, for all measures. The increase

in F-score varies in the range from 8% to 22% compared to the cascade SVM

strategy.

4. Discussion245

In the last years, CNNs have been successfully applied to different histopathol-

ogy problems [14, 15, 16], but due to the usual lack of sufficient annotated data,

training these approaches from scratch leads to poor models. This issue can be

bypassed by using transfer learning, adjusting a well-trained network on a cer-

tain domain to another one. Commonly, convolutional layers are kept as general250

feature extractors and only fully connected layers are retrained. Consequently,

less data is required for fine-tuning pre-trained networks.

We used transfer learning to adapt four well-trained deep networks to classify

normal cardiovascular tissues and to recognise organs. The fine-tuned models
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were evaluated at three stages. Firstly, we compared their results to determine255

which one was the best classifier. We observed that HistoResNet, our modified

ResNet architecture, achieved the best overall performance. Secondly, we con-

trasted our approach against HistoNet, our ad-hoc 2D multi-path CNN, finding

out that, in general, the latter approach performed worse. From our point of

view, this outcome suggests that the networks obtained through transfer learn-260

ing are not necessarily in disadvantage to the ones entirely trained on the specific

domain. Thirdly, we assessed our proposal against the state of the art, an ap-

proach based on a cascade SVM presented in [2]. The obtained results showed

that our method outperforms the SVM one in terms of Precision, Recall and F-

score, regardless of the classes considered. Our proposal obtains improvements265

in F-score of 0.159± 0.061, achieving the best accuracy up to date.

Two trends were observed regarding the classification of the six classes. On

the one hand, Vein exhibited the least Precision and F-score compared to the rest

of the classes, what can be due to the similarity between both types of tissues.

It is important to highlight that this situation is not limited to our classification270

algorithms as it was already observed during the manual annotations as well.

On the other hand, Heart was consistently the best-classified class in terms of

F-score.

5. Conclusions

In this paper, we presented an application of transfer learning to classify275

normal cardiovascular tissues and organs from histological images. Four well-

known CNNs architectures trained to recognise visual objects on natural images

(in particular, ResNet, VGG16, VGG19, Inception) were fitted to this problem.

Our transfer learning strategy consisted of keeping and freezing the convolu-

tional layers and updating the fully connected layers to the new scenario. The280

initial weights of the networks were the ones obtained on their previous training

on the ImageNet dataset. The prefix Histo- was used to denote the resulting

models.
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Training deep CNN models requires a massive amount of data. Although

our training set does not contain as many images as ImageNet and we did not285

use data augmentation, the four networks produced high F-scores for most of

the classes. This outcome highlights the main virtue of transfer learning, its

ability to use the potential of deep learning on domains with a reduced number

of training samples. Our proposal was evaluated at three levels. Initially, the

four adapted networks were compared with each other. We determined that the290

best CNN using the transfer learning strategy was HistoResNet, which yielded

F-score between 0.712 and 0.955. Then, the leading CNN was compared against

a network trained solely on our training set, called HistoNet. We concluded that

HistoResNet was better than HistoNet. This situation showed that it is not nec-

essary to train networks from scratch to achieve top results as pre-trained models295

can be adapted to different domains without compromising performance. The

classification scores of both strategies exhibited similar trends. Afterwards, our

deep learning method was compared against a traditional machine learning ap-

proach, a cascade SVM approach using LPB descriptors. Our proposal achieved

improvements in F-score between 0.080 and 0.220 in comparison to the state of300

the art.

The outcome of this research is five-fold. First, we found out that it is pos-

sible to classify normal cardiovascular tissues automatically using deep learning

and transfer learning. Second, we showed that it is feasible to recognise several

cardiovascular organs through the same process. Third, we made our training305

and test set, both models and source code, publicly available. In this way, the

community can understand our proposal in depth, use the methods and datasets

as a benchmark, validate our results and work in further improvements. Fourth,

we created an ad-hoc 2D multi-path network specially crafted for our problem

which yielded an average F-score of 0.768. And finally, we can conclude by310

saying that CNNs are very suitable to improve tissue and organs classification.

In the future, we will extend this proposal by working in the following three

research lines. Firstly, we plan to expand the application spectrum by consid-

ering other human systems. Secondly, we want to include histological ontolo-
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gies [30], morphological information and SPARQL queries. This will allow us315

to correct misclassified image blocks and include histological information di-

rectly into the process (see a first attempt in [20]). Thirdly, Thirdly, we are

planning to integrate the proposed method as additional functionality to the

“Banco de Imágenes Histológicas del Sistema Cardiovascular” (BISCAR) [28],

publicly available at http://biscar.univalle.edu.co.320
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