Publications
2021
Saikia, Surajit; Fernández-Robles, Laura; Fidalgo, Eduardo; Alegre, Enrique
Colour Neural Descriptors for Instance Retrieval Using CNN Features and Colour Models Artículo de revista
En: IEEE Access, vol. 9, pp. 23218–23234, 2021, (Publisher: IEEE).
Resumen | Enlaces | BibTeX | Etiquetas: CNN Features, Color Descriptors, deep learning, Image Retrieval, Object Detection
@article{saikia_colour_2021,
title = {Colour Neural Descriptors for Instance Retrieval Using CNN Features and Colour Models},
author = {Surajit Saikia and Laura Fernández-Robles and Eduardo Fidalgo and Enrique Alegre},
url = {https://ieeexplore.ieee.org/abstract/document/9344701},
year = {2021},
date = {2021-01-01},
journal = {IEEE Access},
volume = {9},
pages = {23218–23234},
abstract = {This paper presents color neural descriptors for image retrieval, using CNN features from different color spaces without fine-tuning. An object detector enhances feature extraction, and a stride-based query expansion improves multi-view retrieval. The method achieves state-of-the-art results on multiple datasets.},
note = {Publisher: IEEE},
keywords = {CNN Features, Color Descriptors, deep learning, Image Retrieval, Object Detection},
pubstate = {published},
tppubtype = {article}
}
2017
Saikia, Surajit; Fidalgo, Eduardo; Alegre, Enrique; Fernández-Robles, Laura
Object detection for crime scene evidence analysis using deep learning Artículo de revista
En: Image Analysis and Processing-ICIAP 2017: 19th International Conference, Catania, Italy, September 11-15, 2017, Proceedings, Part II 19, pp. 14–24, 2017, (Publisher: Springer International Publishing).
Resumen | Enlaces | BibTeX | Etiquetas: fster R-CNN, Object Detection, Real-time system, surveillance
@article{saikia_object_2017,
title = {Object detection for crime scene evidence analysis using deep learning},
author = {Surajit Saikia and Eduardo Fidalgo and Enrique Alegre and Laura Fernández-Robles},
url = {https://link.springer.com/chapter/10.1007/978-3-319-68548-9_2},
year = {2017},
date = {2017-01-01},
journal = {Image Analysis and Processing-ICIAP 2017: 19th International Conference, Catania, Italy, September 11-15, 2017, Proceedings, Part II 19},
pages = {14–24},
abstract = {This paper introduces a real-time object detection system based on Faster R-CNN for surveillance and crime scene analysis. Tested on ImageNet and Karina datasets, it achieved 74.33% accuracy, detecting objects in 0.12 seconds per image using an Nvidia-TitanX GPU.},
note = {Publisher: Springer International Publishing},
keywords = {fster R-CNN, Object Detection, Real-time system, surveillance},
pubstate = {published},
tppubtype = {article}
}