Publications
2020
1.
Chaves, Deisy; Trujillo, María; García, Edward; Barraza, Juan; Lester, Edward; Barajas, Maribel; Rodriguez, Billy; Romero, Manuel; Fernández-Robles, Laura
Automated inspection of char morphologies in colombian coals using image analysis Artículo de revista
En: Intelligent Automation & Soft Computing, vol. 26, no 3, pp. 397–405, 2020.
Resumen | Enlaces | BibTeX | Etiquetas: automated classification, char morphology, coal combustion, machine learning
@article{chaves_automated_2020,
title = {Automated inspection of char morphologies in colombian coals using image analysis},
author = {Deisy Chaves and María Trujillo and Edward García and Juan Barraza and Edward Lester and Maribel Barajas and Billy Rodriguez and Manuel Romero and Laura Fernández-Robles},
url = {https://d1wqtxts1xzle7.cloudfront.net/84400929/pdf-libre.pdf?1650296199=&response-content-disposition=inline%3B+filename%3DAutomated_Inspection_of_Char_Morphologie.pdf&Expires=1739453001&Signature=WRmkYL0vVspGUAWK2T6VzJ7LlDmM3124W~OVgR50dihJQFxgHvpXDGOjN8HhZa3-1MVnKi0FAOlZOlYD3Uv49praFJTy-WokdxMEcJ6DLPl7hJosZQahVgkjY-mVWHZJ~tq6FxhHV471iEpDts1G8MhynylHeFPJRbpmDRxSsNujdBUhj6j9s1a97oZGsQV8gpI8fJegGdr3sysuw46eWo8vF5wlVv7sSz40QP53B0hzipH9k-JTds2WE59sWOu2NxhORsVBYTRfAeXE2XJHLG3F0W44aKpsVc3c3MI4nkDlWqFMbMarR4VIQxm5q1S9LD8qMzzx7F4MVGjYTF4YcA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA},
year = {2020},
date = {2020-01-01},
urldate = {2020-01-01},
journal = {Intelligent Automation & Soft Computing},
volume = {26},
number = {3},
pages = {397–405},
abstract = {This paper proposes machine learning algorithms to automate char morphology classification during coal combustion, improving industrial control efficiency. The approach outperforms the traditional ICCP method by evaluating various morphological features, including the unfused material feature. Results confirm the model’s accuracy in identifying and classifying char particles automatically.},
keywords = {automated classification, char morphology, coal combustion, machine learning},
pubstate = {published},
tppubtype = {article}
}
This paper proposes machine learning algorithms to automate char morphology classification during coal combustion, improving industrial control efficiency. The approach outperforms the traditional ICCP method by evaluating various morphological features, including the unfused material feature. Results confirm the model’s accuracy in identifying and classifying char particles automatically.